PVC Chemistry

Anna Pla-Dalmau Fermilab

NOvA Collaboration Meeting August 26-27, 2005

PVC: GENERAL REMARKS

- PVC degrades easily
 - Heat sensitive polymer (>100 °C, UV or γ-rays)
 - $-(CH_2-CHCI)_n \rightarrow -(CH=CH)_n + nHCI$
 - HCl and O₂ accelerate decomposition
- Additives:
 - To compensate for processing shortcomings
 - To meet product requirements
- Manufacturers:
 - Georgia Gulf
 - POLYONE
 - Smaller: Clariant, Prime

PVC: GENERAL REMARKS

- Wide variety of commercially available resins
 - Processing methods and end properties
 - Molecular weight (K-value) influences both
 - Low K-values easy to process
 - Rigid PVC, no K-value > 70
 - K-value affects porosity
- Unplasticized, rigid PVC:
 - Good chemical properties
 - Resistant to aliphatic hydrocarbons (oils and waxes)
 - Low water absorption

华

NOT JUST PVC!!!

ADDITIVES (performance, processing and cost)

- Heat stabilizers (essential): organo-tin, Ca-Zn, Pb
- Lubricants (processing)
 - External to work at the interface polymer and metal
 - Internal to lower shear viscosity
- Processing aids: PMMA, SAN (affect shear visc.)
- Impact modifiers (NO): ABS, rubbery materials
- Fillers (NO): CaCO₃, glass fibers
- Pigments (YES): TiO₂, best performance
- NO: Plasticizers, UV-absorbers, antioxidants (?)

华

PVC COLOR CONCENTRATE

- TiO2 white pigment
 - Rutile (chlorine process)
 - Anatase (sulfate process) better reflective, less scat.
 - ZnO, MgO degrade PVC
- TiO2 concentrate
 - 60% TiO2
 - Ca-stearate (multi-function: stability, rheology)
 - 6% acrylic-based processing aids
 - 20-30% PVC resin: low molecular weight (water clear)
- Black PVC coating:
 - 2% Carbon Black